CMSC 426 Principles of Computer Security

Lecture 10 Introduction to Cryptography

1

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

Demo of malware analysis

Any Questions from Last Time?

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today's Topics

- Introduction to crypto
 - Definitions
 - Ciphers
- Symmetric Encryption
- Block ciphers
 - DES
 - □ 3DES
 - AES

Crypto- Definitions

- Cryptography
 - "Hidden writing"
 - Creation and use of secret codes and data-related security measures
- Cryptanalysis
 - Theory and practice of "breaking" cryptographic protocols
 - "Breaking" means recovering protected text/bypassing security

Cryptology

- The study of coded messages
- Scientific study of codes: creating, using, analyzing, "breaking"

Encryption Types

- Encryption
 - Turning plain text into encrypted, "protected" text
- Decryption
 - Returning encrypted text to a readable, plain text state
- Symmetric Encryption
 - Uses the same key for encryption and decryption
- Asymmetric Encryption
 - Uses different keys for encryption and decryption

Symmetric Encryption

Historical Ciphers (Substitution)

- Caesar cipher
 - Used by Julius Caesar
- "Rotation" of the alphabet
 Caesar always used it with a shift of 3
- Only 25 possible encryptions
 Relatively easy to brute force

• "Dogs are great" \rightarrow 7 shift \rightarrow "Kvnz hyl nylha"

Historical Ciphers (Algorithms)

- Keyword cipher
 - Keyword "begins" the alphabet, rest follows in order
- Keyword of "Cryptography" results in the ciphertext alphabet CRYPTOGAHBDEFIJKLMNQSUVWXZ ABCDEFGHIJKLMNOPQRSTUVWXYZ
- "Computer Security" \rightarrow encryption \rightarrow "Yjfksqtm Ntysmhqx"
- For better security and readability, often shown in 5-letter blocks:
 "YJFKX QTMNT YSMHQ X"

Historical Ciphers (Algorithms)

- Vigenère cipher
 - Keyword is repeated, and is used to shift plaintext into ciphertext
- For example, a keyword of "DOGS", to encrypt the following:

Simple Substitution Cipher Example

- Assume an "alphabet" of 38 characters: A-Z, 0-9, "", and .
- The substitution cipher is random in this case there is no keyword or simple reversal/shift of the alphabet
 - □ PX2LOB.1MWGSU0V5H6TYNF9K IA7QO3ZJRE4CD8

- What is the plaintext, ciphertext, encryption algorithm, secret key, and decryption algorithm in this case?
- How many possible permutations of the cipher are possible?

Cryptanalytic Attacks

- How many possible permutations are there of 38 characters?
 - □ 38! \rightarrow 38 possibilities for the first letter, 37 for the second, etc.
- 523,022,617,466,601,111,760,007,224,100,074,291,200,000,000
 523 tredecillion, 22 duodecillion, 617 undecillion, 466 decillion, 601 nonillion, 111 octillion, 760 septillion, 7 sextillion, 224 quintillion, 100 quadrillion, 74 trillion, 291 billion, and 200 million

That's a LOT!!!

Substitution Cipher Example

- Plaintext
- Ciphertext
 - □ Both are a message written in the 38-character alphabet
- Encryption algorithm
 - Application of the substitution cipher to the original message
- Secret Key
 - The substitution ciphered alphabet
- Decryption algorithm
 - Application of the inverse of the substitution cipher

Block Ciphers (Symmetric Block Encryption)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Block Ciphers

- Process the plaintext in fixed-size "blocks" (hence the name)
- Ciphertext produced is of blocks of equal size
- Block ciphers are symmetric algorithms
 Key remains the same for encryption and decryption
 However, two separate algorithms for en/decryption

Most commonly-used algorithms are DES, 3DES, and AES

Block Cipher Algorithms

- Sequence of rounds, made of permutations and substitutions
 Each round has its own unique subkey value, derived from the key
- DES and 3DES both use a Feistel network structure
 - Basic encryption and decryption algorithm are the same
 - Only difference is the order in which subkeys are applied
 - 16 rounds of en/decryption
 - Makes use of XOR and substitution

Components of Block Ciphers

Block size

Size in bits of a plaintext/ciphertext block (commonly 128 bits)

Key size

□ Size in bits of the key (commonly 128 bits)

Round function

Basic encryption function; iterated to form the encryption algorithm

Number of rounds

The number of iterations of the round function

Subkey algorithm

Algorithm that expands the key into multiple round keys

Feistel Networks

- Iterative structure used in the DES and 3DES algorithms
 - Split 64 bits of input into right and left blocks
 - Apply Feistel function to the right half of the data
 - XOR it with the left half of the data
 - Swap the two blocks for the next round
 - Each of the 16 rounds is identical
 - (Which is why we swap the data's sides)
 - Only difference is the subkey used in the Feistel function

Image taken from Computer Security (Stallings & Brown)

Feistel Function

- Consists of four stages, done on 32 bits of data
- <u>Expansion</u>: 32 bits is expanded to 48 bits (eight 6 bit pieces, which each contain a copy of the adjacent bit on each side)
- Key mixing: XOR'd with 48-bit subkey
- <u>Substitution</u>: divided into eight 6 bit pieces again, which are processed by the substitution boxes (S-box)
 - □ Turns 6 bits in 4 bits according to a <u>non-linear</u> transformation (provided by a lookup table)
 - Core component of the security of DES; without these, it would be trivial to break
- <u>Permutation</u>: outputs are rearranged according to a fixed permutation, so that the same bits don't go through the same substitution box again together

Image and information taken from https://en.wikipedia.org/wiki/Data_Encryption_Standard

DES (Data Encryption Standard)

- Blocks are 64 bits
- Key is 56 bits
 - Actually 64 bits, but every 8th bit is a parity bit
- Algorithm itself is very secure
 - Very well-studied, and no reported fatal weaknesses
- Key size is woefully small
 - Only 72,000,000,000,000 possible keys (72 quadrillion)
 - Can be brute-forced by a powerful machine in about an hour
- Adopted in 1977, but not used widely since the 90s

Triple DES (or 3DES)

- Uses 3 keys, for a total key size of 168 bits
 - □ Either two or three independent keys, depending on implementation
- To encrypt, it applies the original DES algorithm as follows:
 - Encrypt with key 1
 - Decrypt with key 2
 - Encrypt with key 3
 - If only two keys used, duplicate is used for key 1 and key 3)
- Three times as slow as DES... not good for large encryption jobs

AES (Advanced Encryption Standard)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Advanced Encryption Standard

- AES is also a block cipher, but does not use Feistel networks
 - Instead of splitting data in half and using one half to modify the other, AES processes the entire data block at once
- Block length is 128 bits, and key can be 128, 192, or 256 bits
 - □ For purposes of this class, we'll assume the key is always 128 bits
 - With 128 bits, this means that AES performs 10 rounds
- Decryption is still performed with keys applied in reverse
 - But encryption and decryption algorithms are not identical as in DES

AES Algorithm Overview

 128 bits of input are represented as a 4 by 4 array of bytes

Four different stages are performed in each round

Image and information taken from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Substitute Bytes

 Uses an S-box to perform a table lookup that allows for a byte-by-byte substitution of the block

- Provides the non-linearity in the cipher
 - S-box is derived based on information from the key, using complex math we won't cover in this class
 - (Multiplicative inverse, affine transformation, etc.)
 - □ When <u>de</u>crypting, this is the step that differs, using an "inverse" S-box

Image and information taken from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Shift Rows

- Each row is shifted by an offset
 - This means that each column now contains information from each row

 This prevents the columns in the 4 by 4 array from being encrypted together throughout all the rounds

Image and information taken from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Mix Columns

 Each column is altered, taking in the four bytes of the column, and outputting four bytes

- Each input byte affects all four output bytes (more math)
- This step does not occur in the final round of the algorithm

Image and information taken from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

$$egin{bmatrix} b_{0,j}\ b_{1,j}\ b_{2,j}\ b_{3,j} \end{bmatrix} = egin{bmatrix} 2 & 3 & 1 & 1\ 1 & 2 & 3 & 1\ 1 & 1 & 2 & 3\ 3 & 1 & 1 & 2 \end{bmatrix} egin{bmatrix} a_{0,j}\ a_{1,j}\ a_{2,j}\ a_{2,j}\ a_{3,j} \end{bmatrix} \qquad 0 \leq j \leq 3$$

Add Round Key

- Before the rounds began, the 128 bit key was expanded into an array of subkeys for each round
- Simple bitwise XOR of the current block with that round's subkey

 This stage also occurs at the beginning, before the rounds have properly begun

Image and information taken from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Important (Crypto) Terms

Confusion and Diffusion

- Important concepts in cryptography and evaluating effectiveness
- Confusion
 - Each bit of the ciphertext should depend on several parts of the key
 - Obscures the connection between key and outcome
- Diffusion
 - If a single bit of the plaintext changes, (statistically) about half of the bits in the ciphertext should change

Cipher Block Modes of Operation

- Block ciphers themselves are only good for encrypting a block
 - Repeatedly applying a block cipher to larger amounts of data requires selecting a mode of operation
 - Some modes require an Initialization Vector (IV) to get started
- Different modes of operation exist for different purposes
 - Efficiency
 - Encrypting a stream of data
 - Parallelizing encrypt and/or decrypt
 - Can heavily affect speed

Parallelization

- Completing components of a single task in parallel, using multiple processing elements (*e.g.*, multi-core CPUs)
- Not always possible to achieve
 - Task must be able to be broken into discrete parts
 - Discrete parts can<u>not</u> be dependent on each another
- Parallelization can result in a <u>massive</u> speedup for a task
 Highly desirable when, for example, encrypting large amounts of data

Announcements

- Homework 1 is due Wednesday night
- Lab 2 coming out later today
 - Will be due the Thursday after Spring Break
 - Much more of a walkthrough than Lab 1, but pay attention!
- Midterm 1 is happening next class

Image Sources

- Golden key:
 - https://commons.wikimedia.org/wiki/File:Golden_key_icon.svg
- Caesar cipher disk (adapted from):
 - https://en.wikipedia.org/wiki/File:CipherDisk2000.jpg
- Vigenère:
 - https://commons.wikimedia.org/wiki/File:Vigenere.jpg